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are performed at symmetry points in the Brillouin zone, 
in electron diffraction theory this is not the case. For 
example, in conventional 100 keV electron microscopy 
the crystal orientation normally used, because this 
provides the best electron transmission in bright field 
(Hashimoto, Howie & Whelan, 1962) is with the crys- 
tal set slightly positive of a Bragg reflecting position; 
the corresponding Block waves usually have no partic- 
ular symmetry at such a setting. With 1 MeV incident 
electrons the situation is different and although the 
crystal orientation which maximizes the electron trans- 
mission is often a point of symmetry (Humphreys & 
Lally, 1970), in many cases it is a point of no symmetry 
(Humphreys, Lally, Thomas & Fisher, 1970). 

It is possible that in electron diffraction calculations 
for points of very high symmetry a group represen- 
tation system may be desirable. However these points 
have in the past been of little interest to experimental 
electron microscopists and only a few theoretical cal- 
culations have been made. The authors feel that in 
general the labelling scheme for electron diffraction 
theory which is the most logical, simple and consistent 
with schemes in related fields is the system which labels 
the Bloch waves in terms of the dispersion surface in 
order of the magnitude of their k± component wave 
vectors, as shown in Fig. 1. Following Phillips (1956) 
it is suggested that this system be called the ordered 
labelling scheme. The use of such a scheme is entirely 
straightforward, and the authors suggest that this 
scheme be generally adopted in electron diffraction 
theory. 

Summary and conclusions 

(1) The essential mathematical unity of all wave 
propagation in periodic structures is illustrated and 
emphasized. 

(2) A brief discussion of the critical voltage effect 

is given and equivalent effects in other forms of wave 
propagation are stated. 

(3) It is suggested that the Bloch wave labelling 
scheme for electron diffraction which is the simplest 
and most logical, and which is consistent with accepted 
notations in other forms of Block wave propagation, 
is an ordered labelling scheme in which the top branch 
of the dispersion surface corresponds to wave 1, the 
second branch to wave 2, the third branch to wave 3, 
and so on. 
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In this note more accurate expressions are obtained for the Fourier coefficients of the iso-ano correlation 
function and the origin correlation function of Kartha & Parthasarathy. 

Introduction 

After obtaining the intensity data from the native 
protein and its isomorphous heavy atom derivatives 
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the first stage involved in the determination of the 
protein structure is the location of the heavy atoms in 
the derivative crystals. This is usually carried out in 
two steps, namely, (i) to obtain the coordinates of the 
heavy atoms in each derivative crystal and (ii) to 
correlate the positions of the heavy atoms in the differ- 
ent derivatives to a common origin. Kartha & Par- 
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thasarathy (1965a) and Matthews (1966) have obtained 
methods for combining isomorphous-replacement and 
anomalous-dispersion data to tackle the first step and 
they have further shown that such a combination of 
the two sets of data leads to better results than could be 
obtained by the use of either individually. Matthews 
(1966) has further made a comparative study of his 
method and that of Kartha & Parthasarathy (1965a) 
in the case of c~-chymotrypsin and has shown that his 
method obtains better results. The second step could 
be tackled by making use of the iso-ano or the origin 
correlation function of Kartha & Parthasarathy (1965b) 
(hereafter referred to as KP, 1965b) and here again it 
has been shown that a combined use of the isomor- 
phous-replacement and anomalous-dispersion data 
leadsto better results than could be obtained by using 
either of the sets of data alone. However, they have 
derived these correlation functions by making use of 
the simplifying assumption that the phases of the 
reflexion (hkl) from the native protein and the deriva- 
tives are the same. They have remarked that this 
assumption is less justifiable in their anomalous 
dispersion correlation function than in the isomorphous 
case (see KP, 1965b). In this note we shall show that 
their final results for the iso-ano and the origin corre- 
lation functions can be arrived at, without using this 
assumption, provided we redefine the Fourier coef- 
ficients for these correlation functions in a different 
way. 

It is relevant to point out here that the second step 
can be carried out only after the first step has been 
carried out successfully (see the Discussion section 
later). We shall therefore assume in this note that the 
positions of the heavy atoms in each derivative are 
known and the problem is one of correlating the heavy 
atom configurations in the different derivatives with 
respect to a common origin. 

Iso-ano correlation function 

The structure factor equation for a reflexion (hkl) in 
the j th  heavy atom derivative of the protein can be 
written as (Fig. 1) 

FpHs= Fp + Fnj (1) 

where the contribution to the structure factor for the 
reflexion (hkl) from the native protein is denoted by 
Fv while that from the heavy atoms alone in the j th 
derivative by Fro. From (1) we have 

IFPml 2= IFPi 2 + IFml 2 

+21F~,l IFml cos ( ~ P - ~ m ) ,  (2) 

We can rewrite (2) as 

IFPI IFml cos (c~p-~m)=[IFPml z -  IF~I z -  IFmlZ]/2 

=/j-, say. (3) 

In (3), the quantities IFPI 2 (which denotes the intensity 

of the reflexion (hkl) from the native protein) and 
IfPml z (which denotes the intensity of the reflexion 
(hkl) from the j th  derivative) are known. By making 
use of the synthesis proposed by Matthews (1966) the 
coordinates of the heavy atoms in thejth derivative can 
be determined and from this the value of lFns] z (which 
is independent of the choice of origin in thej th deriv- 
ative) for each reflexion can be calculated. Since the 
values of Ifp[ 2, lEPta[ z and I fml  2 are known for each 
reflexion, the value of Is can be obtained from (3). 

The Bijvoet difference in the j th  derivative will be 
given by [see equation (22) of Kartha & Parthasa- 
rathy, (1965a)] 

(AI)s=4[F~,ml IF~jl sin (~em-~m) 
=4kjlFem I IFml sin (~em-~m) (4) 

where we have assumed, as in the earlier paper, that 
all the anomalous scatterers are of the same type. It is 
clear from Fig. 1 that 

IFPml sin (~vm-~m)=IFPl sin (o~p-o~m)=AB. (5) 

Making use of (5) in (4) we obtain 

(AI)¢ 
IFPI IFml sin (~p -c~m)-  - A j ,  say. (6) 

4ks 

It is clear from (6) that from the measured value of the 
Bijvoet difference (AI)j in the j th  derivative and the 
known value of ks (see Matthews (1966) for an experi- 
mental procedure for obtaining the value of kj) the 
value of As can be calculated. 

From (3) and (6) we obtain 

Ij + iA j=lFpl  IFml exp {i(o~v-c~m)}=FeF~r j . 

It is clear from (7) that 

so that 

ll Jr iAl = FpF~l 

12 + iA2 = FeF;2 

F~, /F~2=(I ,  + iAx)/(I2 + iA2) 

=(11 + iA1) (I2-iA,)/(1~ + A~) . 

A 

[3 ~ S  

FHj 

(7) 

X 

Fig. 1. Argand diagram showing the structure factor relation 
of a reflexion (hkl) in the jth isomorphous derivative of the 
native protein. 



BY S. P A R T H A S A R A T H Y  47 

Multiplying both sides of the above equation by 
F~2F~2=[Fn2I 2 and making use of the result that 
13 + A~= ]Fe121Fm[ 2 [see equation (7)] we obtain 

F~IFu2=[IaI2 + A~A2 + i(AII2- A2I~)]/IF~,]2 . (8) 

It is clear that the left-hand side of (8) is the same as 
the right-hand side of equation (11) of KP (1965b). 
The Fourier synthesis making use of the known quan- 
tities in the right-hand side of (8) therefore gives peaks 
at the ends of the vectors (rH2 -- ril l)  [for details of this 
synthesis see KP (1965b)]. Thus by defining the Fou- 
rier coefficient for the iso-ano correlation synthesis as 
in the right-hand side of (8) it is possible to avoid the 
less valid simplifying assumption that O~PH1 = O~PH2 = O~p. 

From (8) we also obtain 

FmF~2=[III2 + AxA2-i(AII2-A211)]/IFel 2 (9) 

which can be compared with equation (12) of KP 
(1965b). A map with coefficients, as in the right-hand 
side of (9), gives peaks at the ends of the vectors 
r i l l  - -  rH2 .  

Origin correlation function 

This function gives the vector Rx2 relating the origin of 
derivative 2 with respect to that of 1 and the Fourier 
coefficients for this synthesis are given by exp (iR~2. S) 
(see KP, 1965b). Following Kartha & Parthasarathy 
(1965b), if we refer all the coordinates to the origin of 
derivative 1, we will have 

ru2 =R12+ru~ (10) 

where the prime over H denotes that the quantities 
involved are referred with respect to the origin of 
derivative 2. 

Making use of (10) we obtain 

F~IFR2=F~IF~'2 exp (iR12. S).  (11) 

The Fourier coefficient for the origin correlation 
function can be obtained from (8) and (11) as 

exp(iR12 S)=  IlI2+A1A2+i(AlI2-A211) (12) 
• 2 * t IFpl F~lF~2 

A Fourier synthesis using the right-hand side of (12) as 
coefficient gives a peak at the end of the vector R~2 [for 
further details of this synthesis see KP (1965b)]. 

Discussion of the correlation functions 

It is relevant to note the following points regarding the 
computation of the Fourier coefficients for the cot- 

relation functions as obtained here and by KP (1965b): 
(i) For the interpretation (but not the computation) 

of the iso-ano correlation function of KP (1965b) it is 
necessary to know the configurations of the heavy 
atoms in one of the derivatives only. However, for 
both the computation and the interpretation of the iso- 
ano correlation function from (8), it is necessary to 
know the configurations of the heavy atoms in each of 
the derivatives• The greater accuracy in the Fourier 
coefficient obtained in (8) might possibly be worth the 
trouble of obtaining the configurations of the heavy 
atoms in each of the derivatives and this can be easily 
achieved by making use of the synthesis proposed by 
Matthews (1966). 

(ii) The computation of the origin correlation func- 
tion obtained here and by KP (1965b) also pre-supposes 
that the configurations of the heavy atoms in both the 
derivatives are completely established and that the only 
unknown parameter to be determined is the vector R12. 

(iii) Whereas the iso-ano synthesis contains a num- 
ber of peaks (H1H2 in number) corresponding to the 
correlation vectors, the origin correlation function 
gives rise to single peak at RlZ. In spite of this apparent 
advantage of the origin correlation function over the 
iso-ano function obtained in (8) (both these functions 
requiring a knowledge of the configurations of the 
heavy atoms in both the derivations) the iso-ano 
function might probably be more advantageous since 
in the origin correlation function there is a greater 
chance for a number of Fourier coefficients to become 
unduly large due to a very small heavy contribution in 
either of the derivatives. KP (1965b) suggest the use of 
some arbitrary weighting function to tackle such a 
situation. However, the actual superiority of one of the 
correlation functions over the other is yet to be deter- 
mined by experience. 
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in Physics, University of Madras, and to the British 
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